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Abstract

The frontier molecular orbital of 5-phenylcyclopentadiene was predicted on the basis of the orbital mixing rule to deform to favor the
Diels–Alder reaction in a syn contrasteric manner. The prediction was substantiated experimentally by the reactions of 5-methyl-5-
phenylcyclopentadiene with dienophiles to afford the syn attack products, exclusively.
� 2008 Elsevier Ltd. All rights reserved.
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Control of the p-facial selectivity in the Diels–Alder
reactions of 5-substituted cyclopentadienes has been one
of the most fundamental subjects of organic chemistry.1

The dienes can react at either face. anti p-Facial selectivity
with respect to the substituents has been attributed to steric
hindrance due to the substituents at the syn attack transi-
tion states. The reactions of 5-alkylcyclopentadienes were
typical examples.2 However, the cyclopentadienes having
smaller heteroatom substituents such as amino,3a acet-
oxy,3b hydroxyl,3a,c methoxy,3a,d fluoro,3e and chloro3a,f–h

moieties at the 5-positions were found to react with dieno-
philes in a syn contrasteric manner (see Scheme 1).

There had been proposed some stereoelectronic pheno-
mena due to heteroatoms in substituents as the origin of
the selectivity. These include beneficial interaction of the
antisymmetric oxygen orbital with the LUMO of dieno-
philes by Anh for 5-acetoxycyclopentadiene,4a electrostatic
interaction of electrophilic dienophiles with the more
nucleophilic diene face, syn to ‘a lone-pair-containing sub-
stituent’, by Kahn and Hehre,4b transition state hypercon-
jugative stabilization (Cieplak-effect) by Macaulay and
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Fallis,3a,5 and the frontier orbital deformation by Inagaki
and Fukui.6 This latter proposed that unsymmetrical
deformation of the frontier molecular orbital (FMO) of
the dienes with respect to the p-plane is the major contri-
butor to the selectivity. The orbital mixing rule can predict
the deformation. On the basis of the orbital mixing rule, we
successfully predicted and designed the p-facial selectivity
in the reactions of various cyclopentadiene having various
substituents such as SR, SeR, TeR, COOR, COOH,
CONH2, CHO, CH@NOH, CH@CH2, and 2-oxazolynyl
moiety at the 5-position.5a,7a–h The next task is to avoid
the factors due to the heteroatoms in the substituents. In
this Letter we will show the extensive application of the
theory by designing a heteroatom-free 5-substituted cyclo-
pentadiene, which reacted in a contrasteric fashion, over-
whelming the steric hindrance due to the substituent.
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Fig. 2. Contour maps of the sections (x = 0.950,1.330, and z = ±1.020 Å)
of the FMO of diene 1b at the RHF/6-31G* level (Cs). The Cp ring and the
phenyl moiety are in xy and yz planes, respectively. C1 and C4 carbons are
on the x-axis at the space coordinates (Å) of (1.174,00) and (�1.17400),
respectively. The absolute value of the largest contour line is
5.0 � 10�3 AU. The heights of adjacent contours differ by a factor 2.0.
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As the first candidate of such a diene, 5-phenylcyclo-
pentadiene 1 was selected, since the phenyl moiety of diene
1 can mediate orbital mixing through its degenerated
pPh-HOMO’s almost independently on the conformation
around the phenyl moiety. The deformation of the FMO
is predicted as follows. When the phenyl moiety lies in
the plane of symmetry perpendicular to the cyclopentadi-
ene p-plane (hereinafter referred to as a bisected conforma-
tion, 1b), the symmetric pPh-HOMO(S) mediates the mixing.
The pHOMO of the diene combines with the low-lying
pPh-HOMO(S) out of phase and mixes the low-lying r-orbital
of carbon framework out of phase with the pPh-HOMO(S). As
the result, the mixing of the pHOMO and the r-system of the
diene is perturbed by the low-lying pPh-HOMO(S) in such a
way that both diene orbitals contribute to the FMO in
an out of phase manner relative to mediated orbital
pPh-HOMO(S). The FMO extends and distorts inwardly to
favor the reaction on the syn side of the phenyl moiety
(Fig. 1a: W (FMO) = pHOMO � pPh-HOMO(S) + r). When
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Fig. 1. Deformation of the FMO of 5-phenylcyclopentadiene.
the phenyl moiety rotates by 90� around C5–C10 bond from
the bisected conformation (hereinafter referred to a
horizontal conformation 1h), the asymmetric pPh-HOMO(A)

similarly mediates the mixing (Fig. 1b: W(FMO) =
pHOMO � pPh-HOMO(A) + r).

The prediction was briefly examined by ab initio mole-
cular orbital calculation at the RHF/6-31G* level.8 The
bisected conformer 1b was fully optimized to be a Cs

symmetric structure as the global minimum. The nonequiv-
alency of the FMO was confirmed based on contour maps
(Fig. 2).9 Small contours of the highest absolute value
appeared in the map of the section of x = 0.950 Å (inside
of C1) and X = 1.330 Å (outside of C1) at syn and anti sides
of phenyl moiety, respectively. The highest contours of the
sections of z = ±1.020 Å appeared at the syn side of the
phenyl moiety but not in the anti side. The FMO of 1b does
distort inwardly and extends at the syn side of the phenyl
moiety.

The molecular geometry of the horizontal conformer 1h

was similarly optimized by fixing the phenyl moiety to lie in
an orthogonal plane with respect to the plane of symmetry
perpendicular to the cyclopentadiene. Conformer 1h is the
transition state for rotation of the phenyl moiety around
the C5–C10 bond and less stable than 1b by 3.4 kcal/mol.
The contour maps of the FMO showed small contours of
the highest absolute value in the maps of the section of
x = �0.905 and 1.420 Å and z = 1.121 Å at the syn side
of the phenyl moiety, but not in the map of the section
of z = �1.121 Å (Fig. 3). The FMO dose extent at the
syn side of phenyl moiety, although distortion is not clearly
confirmed.10
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Scheme 2. Preparation of 5-methyl-5-phenylcyclopentadiene 2. Reagents:
(i) NaBH4/MeOH; (ii) TsCl, DMAP/pyridine; (iii) DBU/toluene.

Table 1
Diels–Alder reactions of 2 with dienophiles

CCl4

2 syn attack

3a,b

Dienophile

Y

O

O

Diene Dienophile Products Selectivitya syn/anti

2 PMI 3a (Y = NPh) 100:0
MA 3b (Y = O) 100:0

X

PMI 30c, 40c (X@CH@CH2) 34:66b,c

PMI 40d (X@CH@O) 0:100b,d

a The reactions proceeded quantitatively.
b

syn attack anti attack
3'c

X

NPh

O

O
4'c,d

X

NPh

O

O

c See Ref. 7f.
d See Refs. 7f and 16.
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Fig. 3. Contour maps of the sections (x = 0.905, 1.420, and z = ±1.121 Å)
of the FMO of the fixed conformer 1h at the RHF/6-31G* level (Cs). The
Cp ring is in xy plane. C1 and C4 carbons are on the x-axis at the space
coordinates (Å) of (1.173,0,0) and (�1.173,0,0), respectively. The
absolute value of the largest contour line is 5.0 � 10�3 AU. The heights
of adjacent contours differ by a factor 2.0.
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Encouraged by these calculations, the prediction was
examined experimentally. To avoid complication due to
[1,5] hydrogen rearrangement, 5-methyl-5-phenylcyclo-
pentadiene 211,12 was prepared from 2-methyl-2-phenyl-
cyclopentane-1,3-dione13 in 43% total yield (Scheme 2).

The reactions of diene 2 with dienophiles N-phenylmale-
imide (PMI) and maleic anhydride (MA) were performed
at 25 �C in carbon tetrachloride (0.5 M) under nitrogen
atmosphere. The reactions were followed by TLC. After
completion of the reactions, the solvent was removed and
the residues were subjected to 1H NMR to show exclusive
formation of syn attack products, 3a and 3b, respectively
(Table 1).14,15 These results are in contrast with the anti

p-facial selectivity observed in the reactions of the cyclo-
pentadiene derivatives having smaller substituents such as
vinyl and formyl moieties at the 5-positions.7f,16
In conclusion, orbital effects designed on the basis of the
orbital mixing rule can overcome the steric effects due to
substituents.17 Further applications of the reactions
designed by this concept are now in progress.
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